Data Science
Data Science Course Syllabus @ Softzone
1. Introduction to Data Science
-
Overview of Data Science
-
Data Science Life Cycle
-
Role of a Data Scientist
2. Mathematics & Statistics
-
Probability & Distributions
-
Descriptive & Inferential Statistics
-
Linear Algebra & Calculus Basics
-
Hypothesis Testing
3. Programming for Data Science
-
Python Programming Essentials
-
Libraries: NumPy, Pandas, Matplotlib, Seaborn
-
SQL for Data Retrieval
4. Data Wrangling & Cleaning
-
Handling Missing Data & Outliers
-
Data Transformation & Encoding
-
Data Normalization & Scaling
5. Exploratory Data Analysis (EDA)
-
Summary Statistics
-
Correlation Analysis
-
Visualization Techniques (Matplotlib, Seaborn, Plotly)
6. Data Visualization & Dashboarding
-
Data Storytelling
-
Tools: Tableau / Power BI / Python Visualizations
7. Machine Learning
-
Supervised Learning: Regression, Classification
-
Unsupervised Learning: Clustering, Dimensionality Reduction
-
Model Evaluation & Validation
8. Advanced Topics (Optional / Extended)
-
Deep Learning (Neural Networks, CNN, RNN)
-
Natural Language Processing (NLP)
-
Big Data Tools (Hadoop, Spark)
-
Model Deployment & Cloud Basics
9. Databases & Big Data
-
SQL & NoSQL Databases
-
Data Handling at Scale
10. Ethics & Data Privacy
-
Responsible Data Use
-
Bias in Algorithms
-
Data Privacy Laws (GDPR etc.)
11. Capstone / Final Project
-
Real-world dataset projects
-
Predictive modeling, dashboards, reporting
-
Portfolio development for job readiness