Data Science

Data Science Course Syllabus @ Softzone

1. Introduction to Data Science

  • Overview of Data Science

  • Data Science Life Cycle

  • Role of a Data Scientist

2. Mathematics & Statistics

  • Probability & Distributions

  • Descriptive & Inferential Statistics

  • Linear Algebra & Calculus Basics

  • Hypothesis Testing

3. Programming for Data Science

  • Python Programming Essentials

  • Libraries: NumPy, Pandas, Matplotlib, Seaborn

  • SQL for Data Retrieval

4. Data Wrangling & Cleaning

  • Handling Missing Data & Outliers

  • Data Transformation & Encoding

  • Data Normalization & Scaling

5. Exploratory Data Analysis (EDA)

  • Summary Statistics

  • Correlation Analysis

  • Visualization Techniques (Matplotlib, Seaborn, Plotly)

6. Data Visualization & Dashboarding

  • Data Storytelling

  • Tools: Tableau / Power BI / Python Visualizations

7. Machine Learning

  • Supervised Learning: Regression, Classification

  • Unsupervised Learning: Clustering, Dimensionality Reduction

  • Model Evaluation & Validation

8. Advanced Topics (Optional / Extended)

  • Deep Learning (Neural Networks, CNN, RNN)

  • Natural Language Processing (NLP)

  • Big Data Tools (Hadoop, Spark)

  • Model Deployment & Cloud Basics

9. Databases & Big Data

  • SQL & NoSQL Databases

  • Data Handling at Scale

10. Ethics & Data Privacy

  • Responsible Data Use

  • Bias in Algorithms

  • Data Privacy Laws (GDPR etc.)

11. Capstone / Final Project

  • Real-world dataset projects

  • Predictive modeling, dashboards, reporting

  • Portfolio development for job readiness

button_1

This will close in 0 seconds

SOFTZONE IT TRAINING CENTRE (OPC)PVT.LTD

0